SNHG18 controls vascular smooth muscle cell contractile phenotype and neointimal hyperplasia

Cardiovasc Res. 2024 Mar 18:cvae055. doi: 10.1093/cvr/cvae055. Online ahead of print.

Abstract

Aims: Long non-coding RNA (LncRNA) small nucleolar RNA host gene 18 (SNHG18) has been widely implicated in cancers. However, little is known about its functional involvement in vascular diseases. Herein, we attempted to explore a role for SNHG18 in modulating vascular smooth muscle cell (VSMC) contractile phenotype and injury-induced neointima formation.

Methods and results: Analysis of single cell RNA sequencing and transcriptomic datasets showed decreased levels of SNHG18 in injured and atherosclerotic murine and human arteries, which is positively associated with VSMC contractile genes. SNHG18 was upregulated in VSMCs by TGFβ1 through transcription factors Sp1 and SMAD3. SNHG18 gene gain/loss-of-function studies revealed that VSMC contractile phenotype was positively regulated by SNHG18. Mechanistic studies showed that SNHG18 promotes a contractile VSMC phenotype by up-regulating miR-22-3p. SNHG18 up-regulates miR-22 biogenesis and miR-22-3p production by competitive binding with the A-to-I RNA editing enzyme, adenosine deaminase acting on RNA-2 (ADAR2). Surprisingly, we observed that ADAR2 inhibited miR-22 biogenesis not through increasing A-to-I editing within primary miR-22, but by interfering the binding of microprocessor complex subunit DGCR8 to primary miR-22. Importantly, perivascular SNHG18 overexpression in the injured vessels dramatically up-regulated the expression levels of miR-22-3p and VSMC contractile genes, and prevented injury-induced neointimal hyperplasia. Such modulatory effects were reverted by miR-22-3p inhibition in the injured arteries. Finally, we observed a similar regulator role for SNHG18 in human VSMCs, and a decreased expression level of both SNHG18 and miR-22-3p in diseased human arteries; and we found that the expression level of SNHG18 was positively associated with that of miR-22-3p in both healthy and diseased human arteries.

Conclusion: We demonstrate that SNHG18 is a novel regulator in governing VSMC contractile phenotype and preventing injury-induced neointimal hyperplasia. Our findings have important implications for therapeutic targeting snhg18/miR-22-3p signalling in vascular diseases.

Keywords: Adenosine Deaminase RNA Specific B1; Adenosine deaminase acting on RNA-2; Long non-coding RNAs; Neointima; Small Nucleolar RNA Host Gene 18 (SNHG18); Vascular smooth muscle cells; cell migration; cell proliferation; miR-22; microRNA; post-angioplasty restenosis.