Morpho-Anatomical Modulation of Seminal Roots in Response to Water Deficit in Durum Wheat (Triticum turgidum var. durum)

Plants (Basel). 2024 Feb 8;13(4):487. doi: 10.3390/plants13040487.

Abstract

The productivity of durum wheat in Mediterranean regions is greatly reduced by water deficits that vary in intensity and time of occurrence. The development of more tolerant cultivars is the main solution for fighting these stresses, but this requires prior study of their mechanisms. The involvement of the root system in drought avoidance is of major importance. It is in this context that the present work attempts to establish the impact of morpho-anatomical remodeling of seminal roots on dehydration avoidance at the javelina stage in five durum wheat genotypes grown under three water regimes, 100%, 60% and 30% of field capacity (FC). In the last two treatments, which were applied by stopping irrigation, moisture was concentrated mainly in the depths of the substrate cylinders and was accompanied by greater root elongation compared with the control. The elongation reached rates of 20 and 22% in the ACSAD 1231 genotype and 12 and 13% in the Waha genotype, in the 60% FC and 30% FC treatments respectively. The seminal roots anatomy was also modified by water deficit in all genotypes but to different degrees. The diameter of vessels in the late metaxylem vessels was reduced, reaching 17.3 and 48.2% in the Waha genotype in the 60% FC and 30% FC treatments, respectively. The water deficit also increased the number of vessels in the early metaxylem, while reducing the diameter of its conducting vessels. ACSAD 1361 and Langlois genotypes stood out with the highest rates of diameter reduction. The morpho-anatomical transformations of the roots contributed effectively to the plants' absorption of water and, consequently, to the maintenance of a fairly high relative water content, approaching 80%.

Keywords: anatomy; drought; durum wheat; morphology; seminal roots; xylem vessel.

Grants and funding

This research received no external funding.