Imposing Motion Variability for Ergonomic Human-Robot Collaboration

IISE Trans Occup Ergon Hum Factors. 2024 Mar 18:1-12. doi: 10.1080/24725838.2024.2329114. Online ahead of print.

Abstract

OCCUPATIONAL APPLICATIONS"Overassistive" robots can adversely impact long-term human-robot collaboration in the workplace, leading to risks of worker complacency, reduced workforce skill sets, and diminished situational awareness. Ergonomics practitioners should thus be cautious about solely targeting widely adopted metrics for improving human-robot collaboration, such as user trust and comfort. By contrast, introducing variability and adaptation into a collaborative robot's behavior could prove vital in preventing the negative consequences of overreliance and overtrust in an autonomous partner. This work reported here explored how instilling variability into physical human-robot collaboration can have a measurably positive effect on ergonomics in a repetitive task. A review of principles related to this notion of "stimulating" robot behavior is also provided to further inform ergonomics practitioners of existing human-robot collaboration frameworks.

Keywords: Human-robot collaboration; computational ergonomics assessment; human posture; robot-to-human handover.

Plain language summary

Background: Collaborative robots, or cobots, are becoming ubiquitous in occupational settings due to benefits that include improved worker safety and increased productivity. Existing research on human-robot collaboration in industry has made progress in enhancing workers’ psychophysical states, by optimizing measures of ergonomics risk factors, such as human posture, comfort, and cognitive workload. However, short-term objectives for robotic assistance may conflict with the worker’s long-term preferences, needs, and overall wellbeing.Purpose: To investigate the ergonomic advantages and disadvantages of employing a collaborative robotics framework that intentionally imposes variability in the robot’s behavior to stimulate the human partner’s psychophysical state.Methods: A review of “overassistance” within human-robot collaboration and methods of addressing this phenomenon via adaptive automation. In adaptive approaches, the robot assistance may even challenge the user to better achieve a long-term objective while partially conflicting with their short-term task goals. Common themes across these approaches were extracted to motivate and support the proposed idea of stimulating robot behavior in physical human-robot collaboration.Results: Experimental evidence to justify stimulating robot behavior is presented through a human-robot handover study. A robot handover policy that regularly injects variability into the object transfer location led to significantly larger dynamics in the torso rotations and center of mass of human receivers compared to an “overassistive” policy that constrains receiver motion. Crucially, the stimulating handover policy also generated improvements in widely used ergonomics risk indicators of human posture.Conclusions: Our findings underscore the potential ergonomic benefits of a cobot’s actions imposing variability in a user’s responsive behavior, rather than indirectly restricting human behavior by optimizing the immediate task objective. Therefore, a transition from cobot policies that optimize instantaneous measures of ergonomics to those that continuously engage users could hold promise for human-robot collaboration in occupational settings characterized by repeated interactions.