Hyaluronidase impacts exposures of long-acting injectable paliperidone palmitate in rodent models

bioRxiv [Preprint]. 2024 Mar 6:2024.03.03.583160. doi: 10.1101/2024.03.03.583160.

Abstract

A significant challenge in the development of long-acting injectable drug formulations, especially for anti-infective agents, is delivering an efficacious dose within a tolerable injection volume. Co-administration of the extracellular matrix-degrading enzyme hyaluronidase can increase maximum tolerable injection volumes but is untested for this benefit with long-acting injectable formulations. One concern is that hyaluronidase could potentially alter the tissue response surrounding an injection depot, a response known to be important for drug release kinetics of long-acting injectable formulations. The objective of this pilot study was to evaluate the impact of co-administration of hyaluronidase on the drug release kinetics, pharmacokinetic profiles, and injection site histopathology of the long-acting injectable paliperidone palmitate for up to four weeks following intramuscular injection in mouse and rat models. In both species, co-administration of hyaluronidase increased paliperidone plasma exposures the first week after injection but did not negate the overall long-acting release nature of the formulation. Hyaluronidase-associated modification of the injection site depot was observed in mice but not in rats. These findings suggest that further investigation of hyaluronidase with long-acting injectable agents is warranted.

Keywords: histopathology; hyaluronidase; mouse model; paliperidone palmitate; pharmacokinetics; rat model.

Publication types

  • Preprint