Activating soluble adenylyl cyclase protects mitochondria, rescues retinal ganglion cells, and ameliorates visual dysfunction caused by oxidative stress

bioRxiv [Preprint]. 2024 Mar 4:2024.03.04.583371. doi: 10.1101/2024.03.04.583371.

Abstract

Oxidative stress is a key factor causing mitochondrial dysfunction and retinal ganglion cell (RGC) death in glaucomatous neurodegeneration. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway is involved in mitochondrial protection, promoting RGC survival. Soluble adenylyl cyclase (sAC) is one of the key regulators of the cAMP/PKA signaling pathway. However, the precise molecular mechanisms underlying the sAC-mediated signaling pathway and mitochondrial protection in RGCs that counter oxidative stress are not well characterized. Here, we demonstrate that sAC plays a critical role in protecting RGC mitochondria from oxidative stress. Using mouse models of oxidative stress, we found that activating sAC protected RGCs, blocked AMP-activated protein kinase activation, inhibited glial activation, and improved visual function. Moreover, we found that this is the result of preserving mitochondrial dynamics (fusion and fission), promoting mitochondrial bioenergetics and biogenesis, and preventing metabolic stress and apoptotic cell death in a paraquat oxidative stress model. Notably, sAC activation ameliorated mitochondrial dysfunction in RGCs by enhancing mitochondrial biogenesis, preserving mitochondrial structure, and increasing ATP production in oxidatively stressed RGCs. These findings suggest that activating sAC enhances the mitochondrial structure and function in RGCs to counter oxidative stress, consequently promoting RGC protection. We propose that modulation of the sAC-mediated signaling pathway has therapeutic potential acting on RGC mitochondria for treating glaucoma and other retinal diseases.

Publication types

  • Preprint