The Chinese herbal prescription JZ-1 promotes extracellular vesicle production and protects against herpes simplex virus type 2 infection in vitro

Heliyon. 2024 Mar 5;10(5):e27019. doi: 10.1016/j.heliyon.2024.e27019. eCollection 2024 Mar 15.

Abstract

Objective: Genital herpes, primarily caused by HSV-2 infection, remains a widespread sexually transmitted ailment. Extracellular vesicles play a pivotal role in host-virus confrontation. Recent research underscores the influence of Chinese herbal prescriptions on extracellular vesicle production and composition. This study aims to probe the impact of JieZe-1 (JZ-1) on extracellular vesicle components, elucidating its mechanisms against HSV-2 infection via extracellular vesicles.

Methods: The JZ-1's anti-HSV-2 effects were assessed using CCK-8 assay. Extracellular vesicles were precisely isolated utilizing ultracentrifugation and subsequently characterized through TEM, NTA, and Western Blot analyses. The anti-HSV-2 activity of extracellular vesicles was gauged using CCK-8, Western Blot, and immunofluorescence. Additionally, high-throughput sequencing was employed to detect miRNAs from extracellular vesicles, unraveling the potential antiviral mechanisms of JZ-1.

Results: Antiviral efficacy of JZ-1 was shown in VK2/E6E7, HeLa, and Vero cells. The samples extracted from cell supernatant by ultracentrifugation were identified as extracellular vesicles. In VK2/E6E7 cells, extracellular vesicles from JZ-1 group enhanced cell survival rates and diminished the expression of intracellular viral protein gD, contrasting with the inert effect of control group vesicles. Extracellular vesicles from JZ-1 treated Vero cells demonstrated a weaker yet discernible anti-HSV-2 effect. Conversely, extracellular vesicles of HeLa cells exhibited no anti-HSV-2 effect from either group. High-throughput sequencing of VK2/E6E7 cell extracellular vesicles unveiled significant upregulation of miRNA-101, miRNA-29a, miRNA-29b, miRNA-29c, and miRNA-637 in JZ-1 group vesicles. KEGG pathway analysis suggested that these miRNAs may inhibit PI3K/AKT/mTOR signaling pathway and induce autophagy of host cells to protect against HSV-2. Western blot confirmed the induction of autophagy and inhibition of AKT/mTOR in VK2/E6E7 cells with JZ-1 group extracellular vesicles treatment.

Conclusion: JZ-1 had an anti-HSV-2 efficacy. After JZ-1 stimulation, VK2/E6E7 cells secreted extracellular vesicles which protect host cells from HSV-2 infection. High-throughput sequencing showed that these extracellular vesicles contained a large number of miRNAs targeting PI3K/AKT/mTOR pathway. JZ-1 group extracellular vesicles could inhibit the activation of AKT/mTOR pathway and induce the host cells autophagy.

Keywords: Autophagy; Extracellular vesicle; HSV-2; JZ-1; microRNA.