A smartphone-based standalone fluorescence spectroscopy tool for cervical precancer diagnosis in clinical conditions

J Biophotonics. 2024 Mar 17:e202300468. doi: 10.1002/jbio.202300468. Online ahead of print.

Abstract

Real-time prediction about the severity of noncommunicable diseases like cancers is a boon for early diagnosis and timely cure. Optical techniques due to their minimally invasive nature provide better alternatives in this context than the conventional techniques. The present study talks about a standalone, field portable smartphone-based device which can classify different grades of cervical cancer on the basis of the spectral differences captured in their intrinsic fluorescence spectra with the help of AI/ML technique. In this study, a total number of 75 patients and volunteers, from hospitals at different geographical locations of India, have been tested and classified with this device. A classification approach employing a hybrid mutual information long short-term memory model has been applied to categorize various subject groups, resulting in an average accuracy, specificity, and sensitivity of 96.56%, 96.76%, and 94.37%, respectively using 10-fold cross-validation. This exploratory study demonstrates the potential of combining smartphone-based technology with fluorescence spectroscopy and artificial intelligence as a diagnostic screening approach which could enhance the detection and screening of cervical cancer.

Keywords: cervical cancer; intrinsic fluorescence; long short-term memory; mutual information; smartphone-based diagnostic devices.