Brownian motion of droplets induced by thermal noise

Phys Rev E. 2024 Feb;109(2-1):024208. doi: 10.1103/PhysRevE.109.024208.

Abstract

Brownian motion (BM) is pivotal in natural science for the stochastic motion of microscopic droplets. In this study, we investigate BM driven by thermal composition noise at submicro scales, where intermolecular diffusion and surface tension both are significant. To address BM of microscopic droplets, we develop two stochastic multiphase-field models coupled with the full Navier-Stokes equation, namely, Allen-Cahn-Navier-Stokes and Cahn-Hilliard-Navier-Stokes. Both models are validated against capillary-wave theory; the Einstein's relation for the Brownian coefficient D^{*}∼k_{B}T/r at thermodynamic equilibrium is recovered. Moreover, by adjusting the co-action of the diffusion, Marangoni effect, and viscous friction, two nonequilibrium phenomena are observed. (I) The droplet motion transits from the Brownian to Ballistic with increasing Marangoni effect which is emanated from the energy dissipation mechanism distinct from the conventional fluctuation-dissipation theorem. (II) The deterministic droplet motion is triggered by the noise induced nonuniform velocity field which leads to a novel droplet coalescence mechanism associated with the thermal noise.