Proliferative Effects of Mesenchymal Stromal Cells on Neuroblastoma Cell Lines: Are They Tumor Promoting or Tumor Inhibiting?

J Pediatr Surg. 2024 Feb 26:S0022-3468(24)00096-4. doi: 10.1016/j.jpedsurg.2024.02.014. Online ahead of print.

Abstract

Background: Neuroblastoma is a common pediatric malignancy with poor survival for high-risk disease. Mesenchymal stromal cells (MSCs) have innate tumor-homing properties, enabling them to serve as a cellular delivery vehicle, but MSCs have demonstrated variable effects on tumor growth. We compared how placental MSCs (PMSCs) and bone marrow-derived MSCs (BM-MSCs) affect proliferation of neuroblastoma (NB) cells in vitro.

Methods: Indirect co-culture assessed proliferative effects of 18 MSCs (early-gestation PMSCs (n = 9), term PMSCs (n = 5), BM-MSCs (n = 4) on three high-risk NB cell lines (NB1643, SH-SY5Y, and CHLA90). Controls were NB cells cultured in media alone. Proliferation was assessed using MTS assay and measured by fold change (fc) over controls. PMSCs were sub-grouped by neuroprotective effect: strong (n = 7), intermediate (n = 3), and weak (n = 4). The relationship between MSC type, PMSC neuroprotection, and PMSC gestational age on NB cell proliferation was assessed.

Results: NB cell proliferation varied between MSC groups. BM-MSCs demonstrated lower proliferative effects than PMSCs (fc 1.18 vs 1.44, p < 0.001). Neither gestational age nor neuroprotection significantly predicted degree of proliferation. Proliferative effects of MSCs varied among NB cell lines. BM-MSCs had less effect on CHLA90 (fc 1.01) compared to NB1643 (fc 1.33) and SH-SY5Y (fc 1.20). Only NB1643 showed a difference between early and term PMSCs (p = 0.04).

Conclusion: Effects of MSCs on NB cell proliferation vary by MSC source and NB cell line. BM-MSCs demonstrated lower proliferative effects than most PMSCs. MSC neuroprotection was not correlated with proliferation. Improved understanding of MSC proliferation-promoting mechanisms may provide valuable insight into selection of cells best suited as drug delivery vehicles.

Level of evidence: N/A.

Type of study: Original Research.

Keywords: Cellular proliferation; Mesenchymal stromal cells; Neuroblastoma.