TRAF3 regulation of proximal TLR signaling in B cells

J Leukoc Biol. 2024 Mar 15:qiae038. doi: 10.1093/jleuko/qiae038. Online ahead of print.

Abstract

Toll-like receptors are pattern recognition receptors that bridge the innate and adaptive immune responses and are critical for host defense. Most studies of Toll-like receptors have focused upon their roles in myeloid cells. B lymphocytes express most Toll-like receptors and are responsive to Toll-like receptor ligands, yet Toll-like receptor-mediated signaling in B cells is relatively understudied. This is an important knowledge gap, as Toll-like receptor functions can be cell type specific. In striking contrast to myeloid cells, TRAF3 inhibits TLR-mediated functions in B cells. TRAF3-deficient B cells display enhanced IRF3 and NFκB activation, cytokine production, immunoglobulin isotype switching, and antibody production in response to Toll-like receptors 3, 4, 7, and 9. Here, we address the question of how TRAF3 impacts initial B-cell Toll-like receptor signals to regulate downstream activation. We found that TRAF3 in B cells associated with proximal Toll-like receptor 4 and 7 signaling proteins, including MyD88, TRAF6, and the tyrosine kinase Syk. In the absence of TRAF3, TRAF6 showed a greater association with several Toll-like receptor signaling proteins, suggesting that TRAF3 may inhibit TRAF6 access to Toll-like receptor signaling complexes and thus early Toll-like receptor signaling. In addition, our results highlight a key role for Syk in Toll-like receptor signaling in B cells. In the absence of TRAF3, Syk activation was enhanced in response to ligands for Toll-like receptors 4 and 7, and Syk inhibition reduced downstream Toll-like receptor-mediated NFκB activation and proinflammatory cytokine production. This study reveals multiple mechanisms by which TRAF3 serves as a key negative regulator of early Toll-like receptor signaling events in B cells.

Keywords: B cells; TNF receptor-associated factor (TRAF); Toll-like receptor (TLR); cell signaling; inhibition mechanism; myeloid differentiation primary response gene (88) (MyD88); spleen tyrosine kinase (Syk).