Enabling High-Performance Battery Electrodes by Surface-Structuring of Current Collectors and Crack Formation in Electrodes: A Proof-of-Concept

J Colloid Interface Sci. 2024 Jun 15:664:444-453. doi: 10.1016/j.jcis.2024.03.065. Epub 2024 Mar 11.

Abstract

Today's society and economy demand high-performance energy storage systems with large battery capacities and super-fast charging. However, a common problematic consequence is the delamination of the mass loading (including, active materials, binder and conductive carbon) from the current collector at high C-rates and also after certain cycle tests. In this work, surface structuring of aluminum (Al) foils (as a current collector) is developed to overcome the aforementioned delamination process for sulfur (S)/carbon composite cathodes of Li-S batteries (LSBs). The structuring process allows a mechanical interlocking of the loaded mass with the structured current collector, thus increasing its electrode adhesion and its general stability. Through directed crack formation within the mass loading, this also allows an enhanced electrolyte wetting in deeper layers, which in turn improves ion transport at increased areal loadings. Moreover, the interfacial resistance of this composite is reduced leading to an improved battery performance. In addition, surface structuring improves the wettability of water-based pastes, eliminating the need for additional primer coatings and simplifying the electrode fabrication process. Compared to the cells made with untreated current collectors, the cells made with structured current collectors significantly improved rate capability and cycling stability with a capacity of over 1000mAhg-1. At the same time, the concept of mechanical interlocking offers the potential of transfer to other battery and supercapacitor electrodes.

Keywords: Aluminum structuring; Coating adhesion; Crack formation; Lithium-sulfur battery; Rate capability.