Grid-plainification enables medium-temperature PbSe thermoelectrics to cool better than Bi2Te3

Science. 2024 Mar 15;383(6688):1204-1209. doi: 10.1126/science.adk9589. Epub 2024 Mar 14.

Abstract

Thermoelectric cooling technology has important applications for processes such as precise temperature control in intelligent electronics. The bismuth telluride (Bi2Te3)-based coolers currently in use are limited by the scarcity of Te and less-than-ideal cooling capability. We demonstrate how removing lattice vacancies through a grid-design strategy switched PbSe from being useful as a medium-temperature power generator to a thermoelectric cooler. At room temperature, the seven-pair device based on n-type PbSe and p-type SnSe produced a maximum cooling temperature difference of ~73 kelvin, with a single-leg power generation efficiency approaching 11.2%. We attribute our results to a power factor of >52 microwatts per centimeter per square kelvin, which was achieved by boosting carrier mobility. Our demonstration suggests a path for commercial applications of thermoelectric cooling based on Earth-abundant Te-free selenide-based compounds.