Disulfidptosis and ferroptosis related genes predict prognosis and personalize treatment for hepatocellular carcinoma

Transl Cancer Res. 2024 Feb 29;13(2):496-514. doi: 10.21037/tcr-23-1594. Epub 2024 Feb 27.

Abstract

Background: Understanding the interplay between disulfidptosis, ferroptosis, and hepatocellular carcinoma (HCC) could provide valuable insights into the pathogenesis of HCC and potentially identify novel therapeutic targets for the treatment of this deadly disease. This study aimed to identify a prognostic signature for HCC by examining the differential expression of genes related to disulfidptosis and ferroptosis (DRG-FRG), and to assess its clinical applicability.

Methods: By integrating 23 disulfidptosis and 259 ferroptosis related genes with HCC messenger RNA (mRNA) expression data from The Cancer Genome Atlas (TCGA), differentially expressed DRG-FRG genes were identified. From these, 11 DRG-FRG genes were selected to construct a risk signature model using least absolute shrinkage and selection operator regression analyses. The prognostic performance of this model was evaluated by Kaplan-Meier survival analysis and time-dependent receiver operating characteristic (ROC) analysis. Subsequently, a nomogram was built by combining the signature with clinical variables. To further delve into the underlying mechanisms, we performed bioinformatics analysis using a variety of databases.

Results: A prognostic signature based on 11 DRG-FRG genes effectively categorized HCC patients into high- and low-risk groups, showing a significant survival difference. Even after considering clinical variables, this signature remained an independent prognostic factor. Furthermore, the signature played a role in various critical biological processes and pathways that drive HCC progression. Potential therapeutic benefits could be derived from small molecule drugs targeting NQO1 and SLC7A11. Interestingly, the high-risk group exhibited resistance to several chemotherapeutic drugs, yet showed sensitivity to others when contrasted with the low-risk group. Lastly, the DRG-FRG genes signature had a strong correlation with the tumor immune microenvironment, marked by an elevated expression of immune checkpoint molecules in the high-risk group.

Conclusions: The signature based on 11 DRG-FRG genes stands out as a promising prognostic biomarker for HCC. Beyond its predictive value, it sheds light on the intricate crosstalk between DRG-FRG genes and HCC. Importantly, these findings could pave the way for enhanced prognostic prediction, informed treatment decisions, and the advancement of immunotherapy for HCC patients.

Keywords: Hepatocellular carcinoma (HCC); disulfidptosis; ferroptosis; prognosis.