Research on driving mechanism and prediction of electric power carbon emission in Gansu Province under dual-carbon target

Sci Rep. 2024 Mar 13;14(1):6103. doi: 10.1038/s41598-024-55721-2.

Abstract

The electric power industry is a key industry for the country to achieve the double carbon target. Its low carbon development has a double effect on this industry and helps other industries to achieve the carbon peak target. This paper firstly uses the IPCC inventory method to calculate carbon emissions in the production phase of the power industry in Gansu Province from 2000 to 2019, followed by the ridge regression method and the STIRPAT model to analyse the quantitative impact of six major drivers on carbon emissions, and finally, the scenario analysis method is used to forecast carbon emissions in this phase. The results show that the carbon emissions of Gansu Province show a trend of rising and then falling, and reached a peak of 65.66 million tons in 2013. For every 1% increase in population effect, urbanisation level, affluence, clean energy generation share, technology level and industrial structure, carbon emissions will grow by 4.939%, 0.625%, 0.224%, - 0.259%, 0.063% and 0.022% respectively. Because of the clean energy advantage in Gansu Province, the low-carbon development scenario will continue to have low carbon emissions during the scenario cycle, which can be reduced to 53.454 million tons in 2030; the baseline scenario will achieve a carbon peak in 2025, with a peak of 62.627 million tons; the economic development scenario has not achieved carbon peak during the scenario cycle, and carbon emissions will increase to 73.223 million tons in 2030.

Keywords: Carbon emissions; Power industry; Ridge regression; Scenario prediction.