Improving Anti-HIV activity and pharmacokinetics of enfuvirtide (T20) by modification with oligomannose

Eur J Med Chem. 2024 Apr 5:269:116299. doi: 10.1016/j.ejmech.2024.116299. Epub 2024 Mar 8.

Abstract

Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 μM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.

Keywords: DC-SIGN; Dendritic cells (DCs); Dual-targeted inhibition; Glycopeptide; HIV-1 infection.

MeSH terms

  • Animals
  • Enfuvirtide / metabolism
  • Enfuvirtide / pharmacology
  • HIV Envelope Protein gp41 / metabolism
  • HIV Fusion Inhibitors* / metabolism
  • HIV Fusion Inhibitors* / pharmacology
  • HIV Infections*
  • HIV-1*
  • Peptide Fragments / metabolism
  • Peptide Fragments / pharmacology
  • Rats

Substances

  • Enfuvirtide
  • HIV Fusion Inhibitors
  • Peptide Fragments
  • HIV Envelope Protein gp41