Novel Probiotic Candidates in Artisanal Feta-Type Kefalonian Cheese: Unveiling a Still-Undisclosed Biodiversity

Probiotics Antimicrob Proteins. 2024 Mar 13. doi: 10.1007/s12602-024-10239-x. Online ahead of print.

Abstract

Autochthonous dairy lactic acid bacteria (LAB) isolates encompass a natural source of starter, adjunct, or probiotic candidates. In this context, traditionally manufactured, using exclusively animal rennet, Feta-type cheeses were collected from five farms located in different regions of Kefalonia island (Greece). The primary objective of this study was to isolate and characterize novel LAB, thereby exploring the unmapped microbial communities of Kefalonian Feta-type cheese and identifying new potential probiotics. The initial screening, included a preliminary gastrointestinal (GI) tolerance assessment (acidic conditions and bile salts), followed by their safety evaluation (hemolytic activity and antibiotic susceptibility). Based on the preliminary screening, selected strains underwent molecular identification and were further investigated for their probiotic attributes (lysozyme and phenol resistance, antimicrobial traits, antidiabetic aspects, cholesterol reduction and adhesion, adhesion to Caco-2 cells, and milk acidification potential). The results showed that 49, out of the 93 retrieved isolates, exhibited resistance to GI conditions, whereas 18 met the safety criteria. The molecular identification revealed strains belonging to the species Lactiplantibacillus plantarum, Limosilactobacillus fermentum, Lacticaseibacillus rhamnosus, and Lacticaseibacillus paracasei. The selected rod-shaped 14 isolates displayed a potential probiotic character. The best-performing isolates concerning cholesterol assimilation and adhesion, α-glucosidase inhibition, and epithelial adherence were Lpb. plantarum F89, F162, and F254 and Lcb. paracasei F214 and F216, whereas Lcb. paracasei F70 showed potential as a defined strain starter. The present study explores for the first time the biodiversity of traditionally fermented microbial communities in Kefalonian Feta-type cheese, revealing novel potential probiotic strains that can contribute to the development of innovative functional food products.

Keywords: Autochthonous isolates; Functional; Lactic acid bacteria; Probiotic properties; Sustainable food systems; White brine cheese.