A management framework for sudden water pollution: A systematic review output

Water Environ Res. 2024 Mar;96(3):e11012. doi: 10.1002/wer.11012.

Abstract

Numerous sudden water pollution (SWP) incidents have occurred frequently in recent years, constituting a potential risk to human, socio-economic, and ecological health. This paper systematically reviews the current literature, with the view to establishing a management framework for SWP incidents. Only 39 of the 327 downloaded articles were selected, and the ROSES protocol was utilized in this review. The results indicated industries, mining sites, and sewage treatment plants as key SWP contributors through accidental leakages, traffic accidents, illegal discharge, natural disasters, and terrorist attacks. These processes also presented five consequences, including the contamination of drinking water sources, disruption of drinking water supply, ecological damage, loss of human life, and agricultural water pollution. Meanwhile, five mitigation strategies included reservoir operation, real-time monitoring, early warning, and chemical and biological treatments. Although an advancement in mitigation strategies against SWP was observed in this review, previous studies reported only a few prevention strategies. Considering that this review provided an SWP-based management framework and a hydrodynamic model selection guideline, which provide a foundation for implementing proactive measures against the SWP. These guidelines and the SWP-based management framework require practical field trials for future studies. PRACTITIONER POINTS: Sudden water pollution increases with industrial growth but decrease with awareness. Human and ecosystem health and social economy are the endpoint receptacles. Mitigation strategies include reservoir dispatch, early warning, and treatments. DPSIR model forms the basis for proving proactive measures against sudden pollution. This review provides a guideline for the selection hydrodynamic models application.

Keywords: accidental water pollution; hydrodynamic model; instantaneous contamination; mitigation strategy.

Publication types

  • Systematic Review
  • Review

MeSH terms

  • Drinking Water*
  • Ecosystem
  • Environmental Monitoring / methods
  • Humans
  • Water Pollution / analysis
  • Water Supply

Substances

  • Drinking Water