Global Sensitivity Analysis of Factors Influencing the Surface Temperature of Mold during Autoclave Processing

Polymers (Basel). 2024 Mar 5;16(5):705. doi: 10.3390/polym16050705.

Abstract

During the process of forming carbon fiber reinforced plastics (CFRP) in an autoclave, deeply understanding the global sensitivity of factors influencing mold surface temperature is of paramount importance for optimizing large frame-type mold thermally and enhancing curing quality. In this study, the convective heat transfer coefficient (CHTC), the thickness of composite laminates (TCL), the thickness of mold facesheet (TMF), the mold material type (MMT), and the thickness of the auxiliary materials layer (TAL) have been quantitatively assessed for the effects on the mold surface temperature. This assessment was conducted by building the thermal-chemical curing model of composite laminates and utilizing the Sobol global sensitivity analysis (GSA) method. Additionally, the interactions among these factors were investigated to gain a comprehensive understanding of their combined effects. The results show that the sensitivity order of these factors is as follows: CHTC > MMT > TMF > TCL > TAL. Moreover, CHTC, MMT, and TMF are the main factors influencing mold surface temperature, as the sum of their first-order sensitivity indices accounts for over 97.3%. The influence of a single factor is more significant than that of the interaction between factors since the sum of the first-order sensitivity indices of the factors is more than 78.1%. This study will support the development of science-based guidelines for the thermal design of molds and associated heating equipment design.

Keywords: CFRP; Sobol method; autoclave processing; mold design; mold surface temperature; sensitivity analysis.