Tensile and Compressive Properties of Woven Fabric Carbon Fiber-Reinforced Polymer Laminates Containing Three-Dimensional Microvascular Channels

Polymers (Basel). 2024 Feb 29;16(5):665. doi: 10.3390/polym16050665.

Abstract

Microvascular self-healing composite materials have significant potential for application and their mechanical properties need in-depth investigation. In this paper, the tensile and compressive properties of woven fabric carbon fiber-reinforced polymer (CFRP) laminates containing three-dimensional microvascular channels were investigated experimentally. Several detailed finite element (FE) models were established to simulate the mechanical behavior of the laminate and the effectiveness of different models was examined. The damage propagation process of the microvascular laminates and the influence of microvascular parameters were studied by the validated models. The results show that microvascular channels arranged along the thickness direction (z-direction) of the laminates are critical locations under the loads. The channels have minimal effect on the stiffness of the laminates but cause a certain reduction in strength, which varies approximately linearly with the z-direction channel diameter within its common design range of 0.1~1 mm. It is necessary to consider the resin-rich region formed around microvascular channels in the warp and weft fiber yarns of the woven fabric composite when establishing the FE model. The layers in the model should be assigned with equivalent unidirectional ply material in order to calculate the mechanical properties of laminates correctly.

Keywords: experimental test; finite element analysis; microvascular; self-healing composites; woven fabric CFRP.

Grants and funding

This research received no external funding.