Valorisation of Sub-Products from Pyrolysis of Carbon Fibre-Reinforced Plastic Waste: Catalytic Recovery of Chemicals from Liquid and Gas Phases

Polymers (Basel). 2024 Feb 21;16(5):580. doi: 10.3390/polym16050580.

Abstract

Waste carbon fibre-reinforced plastics were recycled by pyrolysis followed by a thermo-catalytic treatment in order to achieve both fibre and resin recovery. The conventional pyrolysis of this waste produced unusable gas and hazardous liquid streams, which made necessary the treatment of the pyrolysis vapours. In this work, the vapours generated from pyrolysis were valorised thermochemically. The thermal treatment of the pyrolysis vapours was performed at 700 °C, 800 °C and 900 °C, and the catalytic treatment was tested at 700 °C and 800 °C with two Ni-based catalysts, one commercial and one homemade over a non-conventional olivine support. The catalysts were deeply characterised, and both had low surface area (99 m2/g and 4 m2/g, respectively) with low metal dispersion. The thermal treatment of the pyrolysis vapours at 900 °C produced high gas quantity (6.8 wt%) and quality (95.5 vol% syngas) along with lower liquid quantity (13.3 wt%) and low hazardous liquid (92.1 area% water). The Ni-olivine catalyst at the lowest temperature, 700 °C, allowed us to obtain good gas results (100% syngas), but the liquid was not as good (only 58.4 area% was water). On the other hand, the Ni commercial catalyst at 800 °C improved both the gas and liquid phases, producing 6.4 wt% of gas with 93 vol% of syngas and 13.6 wt% of liquid phase with a 97.5 area% of water. The main reaction mechanisms observed in the treatment of pyrolysis vapours were cracking, dry and wet reforming and the Boudouard reaction.

Keywords: carbon fibre-reinforced plastics; catalyst; hydrogen; pyrolysis; recycling.