Near-Infrared Dual Greenhouse Gas Sensor Based on Hollow-Core Photonic Crystal Fiber for Gas-Cell In-Situ Applications

Sensors (Basel). 2024 Mar 5;24(5):1670. doi: 10.3390/s24051670.

Abstract

A greenhouse gas sensor has been developed to simultaneously detect multiple gas species within a hollow-core photonic bandgap fiber (HC-PBF) structure entirely composed of fibers. To enhance sensitivity, the gas cell consists of HC-PBF enclosed between two single-mode fibers fused with a reflective end surface to double the absorption length. The incorporation of side holes for gas diffusion allows for analysis of the relationship between gas diffusion speed, number of drilled side holes, and energy loss. As the number of drilled holes increases, the response time decreases to less than 3 min at the expense of energy loss. Gas experiments demonstrated detection limits of 0.1 ppm for methane and 2 ppm for carbon dioxide, with an average time of 50 s. In-situ testing conducted in rice fields validates the effectiveness of the developed gas detection system using HC-PBF cells, establishing all-fiber sensors with high sensitivity and rapid response.

Keywords: fiber sensor; greenhouse gas; infrared absorption.