Study of slope length (L) extraction based on slope streamline and the comparison of method results

Sci Rep. 2024 Mar 13;14(1):6047. doi: 10.1038/s41598-024-56696-w.

Abstract

Slope length is an important factor in soil erosion modeling, and the reasonable automatic extraction of slope length is of great significance in soil erosion research. However, previous studies have mainly focused on the regional scale, and how to effectively extract slope length at the slope scale deserves further research. In this study, a slope length extraction algorithm based on slope streamlines method (SSM) is proposed for the slope length extraction problem in geomorphology, and it is compared with three existing slope length calculation methods. The experimental results show that the new method can quickly calculate the length of slope streamlines, and the extracted slope lengths have better accuracy; the coefficients of determination demonstrates a better overall fitting effect of the four extraction methods, with coefficients of determination exceeding 0.7; this indicates that the use of SSM has similar accuracy and stability to other methods in calculating slope lengths. Among all the calculation methods, SSM has a better overall fitting effect for slope length calculation, and the obtained slope length value domain range is relatively small and concentrated in a small range, which expresses the slope length better.

Keywords: DEM; Inverse terrain; Loess Plateau; Slope length extraction; Slope streamline.