Performance evaluation and optimization of a suspension-type reactor for use in heterogeneous catalytic ozonation

Water Res. 2024 May 1:254:121410. doi: 10.1016/j.watres.2024.121410. Epub 2024 Mar 2.

Abstract

Packed fixed-bed reactors are traditionally used for heterogeneous catalytic ozonation. However, a high solid-to-liquid requirement, poor ozone dissolution, ineffective utilization of catalyst surface area, and production of large amounts of catalyst waste impede application of such reactors. In this study, we designed a suspension catalytic ozonation reactor and compared the performance of this reactor with that of a traditional fixed-bed catalytic ozonation reactor employing oxalic acid (OA) as the target contaminant. Our results showed that total O3 dissolved into the suspension reactor (117-134 mg.L-1) was much higher compared to that measured in the fixed-bed reactor (53 mg.L-1) due to a higher O3(g) interphase mass transfer rate in the suspension reactor. In accordance with the higher O3(g) interphase mass transfer, we observed a much higher proportional OA removal (32 %) compared to that achieved in the fixed-bed reactor (10%) employing an Fe-oxide catalyst supported on Al2O3 (Fe-oxide@Al2O3) in both reactors. Use of a double-layered Cu-Al hydroxide (Cu-Al LDHs) catalyst in the suspension reactor further enhanced the performance with nearly 90 % OA removal observed. Given the superior performance of the suspension reactor, we investigated the impact of operating conditions (catalyst dosage, hydraulic retention time and ozone dosage) employing Cu-Al LDHs as the catalyst. We also developed a mathematical kinetic model to describe the performance of the suspension reactor and, through use of the kinetic model, showed that O3(g) interphase transfer rate was the rate-limiting step in OA removal. Thus, improvement in ozone gas diffuser design is required to improve the performance of the suspension reactor. Overall, the present study demonstrated that suspension reactors were more effective than fixed-bed reactors for oxidation of surface-active organic compounds such as OA due to the higher ozone interphase mass transfer rate and effective utilization of the catalyst surface area that can be achieved. As such, further research on suspension reactor design and development of catalysts suitable for use in suspension reactors should facilitate large-scale application of catalytic ozonation processes by the wastewater treatment industry.

Keywords: Catalytic ozonation; Layered double hydroxides; Organic removal; Ozonation reactor; Particle rheology.

MeSH terms

  • Catalysis
  • Models, Theoretical
  • Oxalic Acid
  • Oxidation-Reduction
  • Oxides
  • Ozone*
  • Water Pollutants, Chemical* / analysis
  • Water Purification* / methods

Substances

  • Oxides
  • Oxalic Acid
  • Ozone
  • Water Pollutants, Chemical