Photoinduced Selective B-H Activation of nido-Carboranes

J Am Chem Soc. 2024 Mar 20;146(11):7791-7802. doi: 10.1021/jacs.4c00550. Epub 2024 Mar 10.

Abstract

The development of new synthetic methods for B-H bond activation has been an important research area in boron cluster chemistry, which may provide opportunities to broaden the application scope of boron clusters. Herein, we present a new reaction strategy for the direct site-selective B-H functionalization of nido-carboranes initiated by photoinduced cage activation via a noncovalent cage···π interaction. As a result, the nido-carborane cage radical is generated through a single electron transfer from the 3D nido-carborane cage to a 2D photocatalyst upon irradiation with green light. The resulting transient nido-carborane cage radical could be directly probed by an advanced time-resolved EPR technique. In air, the subsequent transformations of the active nido-carborane cage radical have led to efficient and selective B-N, B-S, and B-Se couplings in the presence of N-heterocycles, imines, thioethers, thioamides, and selenium ethers. This protocol also facilitates both the late-stage modification of drugs and the synthesis of nido-carborane-based drug candidates for boron neutron capture therapy (BNCT).