Whole-genome sequencing and analysis of Chryseobacterium arthrosphaerae from Rana nigromaculata

BMC Microbiol. 2024 Mar 8;24(1):80. doi: 10.1186/s12866-024-03223-6.

Abstract

Chryseobacterium arthrosphaerae strain FS91703 was isolated from Rana nigromaculata in our previous study. To investigate the genomic characteristics, pathogenicity-related genes, antimicrobial resistance, and phylogenetic relationship of this strain, PacBio RS II and Illumina HiSeq 2000 platforms were used for the whole genome sequencing. The genome size of strain FS91703 was 5,435,691 bp and GC content was 37.78%. A total of 4,951 coding genes were predicted; 99 potential virulence factors homologs were identified. Analysis of antibiotic resistance genes revealed that strain FS91703 harbored 10 antibiotic resistance genes in 6 categories and 2 multidrug-resistant efflux pump genes, including adeG and farA. Strain FS91703 was sensitive to β-lactam combination drugs, cephem, monobactam and carbapenems, intermediately resistant to phenicol, and resistant to penicillin, aminoglycosides, tetracycline, fluoroquinolones, and folate pathway inhibitors. Phylogenetic analysis revealed that strain FS91703 and C. arthrosphaerae CC-VM-7T were on the same branch of the phylogenetic tree based on 16 S rRNA; the ANI value between them was 96.99%; and the DDH values were 80.2, 72.2 and 81.6% by three default calculation formulae. These results suggested that strain FS91703 was a species of C. arthrosphaerae. Pan-genome analysis showed FS91703 had 566 unique genes compared with 13 other C. arthrosphaerae strains, and had a distant phylogenetic relationship with the other C. arthrosphaerae strains of the same branch in phylogenetic tree based on orthologous genes. The results of this study suggest that strain FS91703 is a multidrug-resistant and highly virulent bacterium, that differs from other C. arthrosphaerae strains at the genomic level. The knowledge about the genomic characteristics and antimicrobial resistance of strain FS91703 provides valuable insights into this rare species, as well as guidance for the treatment of the disease caused by FS91703 in Rana nigromaculata.

Keywords: Chryseobacterium arthrosphaerae; Rana nigromaculata; Bioinformatics analysis; Whole-genome sequence.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Chryseobacterium* / genetics
  • DNA, Bacterial / genetics
  • Genome, Bacterial
  • Phylogeny
  • Ranidae
  • Whole Genome Sequencing

Substances

  • DNA, Bacterial
  • Anti-Bacterial Agents

Supplementary concepts

  • Chryseobacterium arthrosphaerae