Floralozone regulates MiR-7a-5p expression through AMPKα2 activation to improve cognitive dysfunction in vascular dementia

Exp Neurol. 2024 Jun:376:114748. doi: 10.1016/j.expneurol.2024.114748. Epub 2024 Mar 7.

Abstract

Background: The pathogenesis of vascular dementia (VD) is complex, and currently, no effective treatments have been recommended. Floralozone is a colorless liquid first discovered in Lagotis Gaertn. Recently, its medicinal value has been increasingly recognized. Our previous study has demonstrated that Floralozone can improve cognitive dysfunction in rats with VD by regulating the transient receptor potential melastatin 2 (TRPM2) and N-methyl-D-aspartate receptor (NMDAR) signaling pathways. However, the mechanism by which Floralozone regulates TRPM2 and NMDAR to improve VD remains unclear. AMP-activated protein kinase (AMPK) is an energy regulator in vivo; however, its role of AMPK activation in stroke remains controversial. MiR-7a-5p has been identified to be closely related to neuronal function.

Purpose: To explore whether Floralozone can regulate the miR-7a-5p level in vivo through AMPKα2 activation, affect the TRPM2 and NR2B expression levels, and improve VD symptoms.

Methods: The VD model was established by a modified bilateral occlusion of the common carotid arteries (2-VO) of Sprague-Dawley (SD) rats and AMPKα2 KO transgenic (AMPKα2-/-) mice. Primary hippocampal neurons were modeled using oxygen and glucose deprivation (OGD). Morris water maze (MWM) test, hematoxylin-eosin staining (HE staining), and TUNEL staining were used to investigate the effects of Floralozone on behavior and hippocampal morphology in rats. Minichromosome maintenance complex component 2(MCM2) positive cells were used to investigate the effect of Floralozone on neurogenesis. Immunofluorescence staining, qRT-PCR, and western blot analysis were used to investigate the effect of Floralozone on the expression levels of AMPKα2, miR-7a-5p, TRPM2, and NR2B.

Results: The SD rat experiment revealed that Floralozone improved spatial learning and memory, improved the morphology and structure of hippocampal neurons, reduced apoptosis of hippocampal neurons and promoted neurogenesis in VD rats. Floralozone could increase the miR-7a-5p expression level, activate AMPKα2 and NR2B expressions, and inhibit TRPM2 expression in hippocampal neurons of VD rats. The AMPKα2 KO transgenic (AMPKα2-/-) mice experiment demonstrated that Floralozone could regulate miR-7a-5p, TRPM2, and NR2B expression levels through AMPKα2 activation. The cell experiment revealed that the TRPM2 and NR2B expression levels were regulated by miR-7a-5p, whereas the AMPKα2 expression level was not.

Conclusion: Floralozone could regulate miR-7a-5p expression level by activating the protein expression of AMPKα2, control the protein expression of TRPM2 and NR2B, improve the morphology and structure of hippocampus neurons, reduce the apoptosis of hippocampus neurons, promote neurogenesis and improve the cognitive dysfunction.

Keywords: AMPKα2; Floralozone; NR2B; TRPM2; miR-7a-5p.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases* / genetics
  • AMP-Activated Protein Kinases* / metabolism
  • Animals
  • Cognitive Dysfunction* / drug therapy
  • Cognitive Dysfunction* / etiology
  • Cognitive Dysfunction* / genetics
  • Cognitive Dysfunction* / metabolism
  • Dementia, Vascular* / drug therapy
  • Dementia, Vascular* / genetics
  • Dementia, Vascular* / metabolism
  • Hippocampus / drug effects
  • Hippocampus / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Neurons / drug effects
  • Neurons / metabolism
  • Rats
  • Rats, Sprague-Dawley*
  • TRPM Cation Channels / genetics
  • TRPM Cation Channels / metabolism

Substances

  • MicroRNAs
  • AMP-Activated Protein Kinases
  • AMPK alpha2 subunit, mouse
  • MIRN7 microRNA, mouse
  • TRPM Cation Channels