Three-Dimensional Characterization of Dry Particle Coating Structures Originating from the Mechano-fusion Process

Microsc Microanal. 2024 Apr 29;30(2):179-191. doi: 10.1093/mam/ozae009.

Abstract

Dry particle coating processes are of key importance for creating functionalized materials. By a change in surface structure, initiated during coating, a surface property change and thus functionalization can be achieved. This study introduces an innovative approach employing 3D X-ray micro-computed tomography (micro-CT) to characterize coated particles, consisting of spherical alumina particles (d50 = 45.64 μm), called hosts, surrounded by spherical polystyrene particles (d50 = 3.5 μm), called guests. The formed structures, hetero-aggregates, are generated by dry particle coating using mechano-fusion (MF). A deeper understanding of the influence of MF process parameters on the coating structures is a crucial step toward tailoring of coating structure, resulting surface property and functionalization. Therefore, the influence of rotational speed, process time, and total mechanical energy input during MF is explored. Leveraging micro-CT data, acquired of coated particles, enables non-stereologically biased and quantitative coating structure analysis. The guest's coating thickness is analyzed using the maximum inscribed sphere and ray method, two different local thickness measurement approaches. Particle-discrete information of the coating structure are available after a proper image processing workflow is implemented. Coating efficiency and guest's neighboring relations (nearest neighbor distance and number of neighbors inside search radius) are evaluated.

Keywords: X-ray micro-computed tomography; coating structure analysis; dry particle coating; mechano-fusion.