Adulteration Detection and Quantification in Olive Oil Using Excitation-Emission Matrix Fluorescence Spectroscopy and Chemometrics

J Fluoresc. 2024 Mar 8. doi: 10.1007/s10895-024-03613-z. Online ahead of print.

Abstract

This research investigates the use of excitation-emission matrix fluorescence (EEMF) in conjunction with chemometric models to rapidly identify and quantify adulteration in olive oil, a critical concern where sample availability is limited. Adulteration is simulated by blending soybean, peanut, and linseed oils into olive oil, creating diverse adulterated samples. Principal component analysis (PCA) was applied to the EEMF spectral data as an initial exploratory measure to cluster and differentiate adulterated samples. Spatial clustering enabled vivid visualization of the variations and trends in the spectra. The novel application of parallel factor analysis (PARAFAC) for data decomposition in this paper focuses on unraveling correlations between the decomposed components and the actual adulterated components, which offers a novel perspective for accurately quantifying adulteration levels. Additionally, a comparative analysis was conducted between the PCA and PARAFAC methodologies. Our study not only unveils a new avenue for the quantitative analysis of adulterants in olive oil through spectral detection but also highlights the potential for applying these insights in practical, real-world scenarios, thereby enhancing detection capabilities for various edible oil samples. This promises to improve the detection of adulteration across a range of edible oil samples, offering significant contributions to food safety and quality assurance.

Keywords: Adulteration; Excitation-emission matrix fluorescence; Olive oils; PARAFAC; PCA.