Prospective observational pilot study of the T2Resistance panel in the T2Dx system for detection of resistance genes in bacterial bloodstream infections

J Clin Microbiol. 2024 Apr 10;62(4):e0129623. doi: 10.1128/jcm.01296-23. Epub 2024 Mar 8.

Abstract

Early initiation of antimicrobial therapy targeting resistant bacterial pathogens causing sepsis and bloodstream infections (BSIs) is critical for a successful outcome. The T2Resistance Panel (T2R) detects the following resistance genes within organisms that commonly cause BSIs directly from patient blood samples: blaKPC, blaCTXM-14/15, blaNDM/bla/IMP/blaVIM, blaAmpC, blaOXA, vanA, vanB, and mecA/mecC. We conducted a prospective study in two major medical centers for the detection of circulating resistance genes by T2R in patients with BSIs. T2R reports were compared to antimicrobial susceptibility testing (AST), phenotypic identification, and standard molecular detection assays. Among 59 enrolled patients, 25 resistance genes were identified: blaKPC (n = 10), blaNDM/bla/IMP/blaVIM (n = 5), blaCTXM-14/15 (n = 4), blaAmpC (n = 2), and mecA/mecC (n = 4). Median time-to-positive-T2R in both hospitals was 4.4 hours [interquartile range (IQR): 3.65-4.97 hours] in comparison to that for positive blood cultures with final reporting of AST of 58.34 h (IQR: 45.51-111.2 hours; P < 0.0001). The sensitivity of T2R to detect the following genes in comparison to AST was 100% for blaCTXM-14/15, blaNDM/bla/IMP/blaVIM, blaAmpC, mecA/mecC and 87.5% for blaKPC. When monitored for the impact of significant antimicrobial changes, there were 32 events of discontinuation of unnecessary antibiotics and 17 events of escalation of antibiotics, including initiation of ceftazidime/avibactam in six patients in response to positive T2R results for blaKPC. In summary, T2R markers were highly sensitive for the detection of drug resistance genes in patients with bacterial BSIs, when compared with standard molecular resistance detection systems and phenotypic identification assays while significantly reducing by approximately 90% the time to detection of resistance compared to standard methodology and impacting clinical decisions for antimicrobial therapy.

Importance: This is the first reported study to our knowledge to identify key bacterial resistance genes directly from the bloodstream within 3 to 5 hours in patients with bloodstream infections and sepsis. The study further demonstrated a direct effect in modifying initial empirical antibacterial therapy in response to T2R signal to treat resistant bacteria causing bloodstream infections and sepsis.

Keywords: T2; blood cultures; rapid molecular diagnosis; resistance genes; sepsis.

Publication types

  • Observational Study

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Infective Agents*
  • Bacteremia* / microbiology
  • Bacteria / genetics
  • Bacterial Infections*
  • Humans
  • Microbial Sensitivity Tests
  • Pilot Projects
  • Prospective Studies
  • Sepsis*

Substances

  • Anti-Bacterial Agents
  • Anti-Infective Agents

Grants and funding