Defect Engineering Centrosymmetric 2D Material Flexocatalysts

Small. 2024 Mar 8:e2401116. doi: 10.1002/smll.202401116. Online ahead of print.

Abstract

In this study, the flexoelectric characteristics of 2D TiO2 nanosheets are examined. The theoretical calculations and experimental results reveal an excellent strain-induced flexoelectric potential (flexopotential) by an effective defect engineering strategy, which suppresses the recombination of electron-hole pairs, thus substantially improving the catalytic activity of the TiO2 nanosheets in the degradation of Rhodamine B dye and the hydrogen evolution reaction in a dark environment. The results indicate that strain-induced bandgap reduction enhances the catalytic activity of the TiO2 nanosheets. In addition, the TiO2 nanosheets degraded Rhodamine B, with kobs being ≈1.5 × 10-2 min-1 in dark, while TiO2 nanoparticles show only an adsorption effect. 2D TiO2 nanosheets achieve a hydrogen production rate of 137.9 µmol g-1 h-1 under a dark environment, 197% higher than those of TiO2 nanoparticles (70.1 µmol g-1 h-1 ). The flexopotential of the TiO2 nanosheets is enhanced by increasing the bending moment, with excellent flexopotential along the y-axis. Density functional theory is used to identify the stress-induced bandgap reduction and oxygen vacancy formation, which results in the self-dissociation of H2 O on the surface of the TiO in the dark. The present findings provide novel insights into the role of TiO2 flexocatalysis in electrochemical reactions.

Keywords: 2D materials; centrosymmetric; defect Engineering; flexocatalysts.