Improving and Extending STERGM Approximations Based on Cross-Sectional Data and Tie Durations

J Comput Graph Stat. 2024;33(1):166-180. doi: 10.1080/10618600.2023.2233593. Epub 2023 Aug 29.

Abstract

Temporal exponential-family random graph models (TERGMs) are a flexible class of models for network ties that change over time. Separable TERGMs (STERGMs) are a subclass of TERGMs in which the dynamics of tie formation and dissolution can be separated within each discrete time step and may depend on different factors. The Carnegie et al. (2015) approximation improves estimation efficiency for a subclass of STERGMs, allowing them to be reliably estimated from inexpensive cross-sectional study designs. This approximation adapts to cross-sectional data by attempting to construct a STERGM with two specific properties: a cross-sectional equilibrium distribution defined by an exponential-family random graph model (ERGM) for the network structure, and geometric tie duration distributions defined by constant hazards for tie dissolution. In this paper we focus on approaches for improving the behavior of the Carnegie et al. approximation and increasing its scope of application. We begin with Carnegie et al.'s observation that the exact result is tractable when the ERGM is dyad-independent, and then show that taking the sparse limit of the exact result leads to a different approximation than the one they presented. We show that the new approximation outperforms theirs for sparse, dyad-independent models, and observe that the errors tend to increase with the strength of dependence for dyad-dependent models. We then develop theoretical results in the dyad-dependent case, showing that when the ERGM is allowed to have arbitrary dyad-dependent terms and some dyad-dependent constraints, both the old and new approximations are asymptotically exact as the size of the STERGM time step goes to zero. We note that the continuous-time limit of the discrete-time approximations has the desired cross-sectional equilibrium distribution and exponential tie duration distributions with the desired means. We show that our results extend to hypergraphs, and we propose an extension of the Carnegie et al. framework to dissolution hazards that depend on tie age.

Keywords: Continuous-time limit; Dynamic network model; Egocentric Data; Exponential-family random graph model (ERGM); Static network model.