RCOR1 is targeted by miR-23b-3p to modulate growth, colony formation, migration, and invasion of prostate cancer cells

Int J Clin Exp Pathol. 2024 Feb 15;17(2):29-38. eCollection 2024.

Abstract

Objectives: Prostate cancer holds the second-highest incidence rate among all male malignancies, with a noticeable scarcity of effective treatment approaches. The REST Corepressor 1 (RCOR1) protein exhibits elevated expression across various tumors, acting as an oncogene. Nevertheless, its functions and mechanisms in prostate cancer have yet to be documented. While miR-23 demonstrates reduced expression in prostate cancer, the downstream genes it regulates remain unclear.

Methods: RT-qPCR and Western blotting assays were utilized to elucidate the mRNA and protein levels of miR-23b-3p and RCOR1. The luciferase reporter assay was employed to unveil the targeting relationship between miR-23b-3p and RCOR1. Additionally, a CCK-8 assay demonstrated cell growth, while colony formation and Transwell assays were performed to observe clone formation, cell migration, and invasion.

Results: In this study, we observed substantial mRNA and protein levels of RCOR1 in prostate cancer cells such as DU145, PC3, and LNCap. RCOR1 overexpression enhanced the growth, colony formation, migration, and invasion of prostate cancer cells, whereas genetic silencing of RCOR1 suppressed these processes. Bioinformatics analysis identified miR-23b-3p as a potential regulator of RCOR1, and luciferase assays validated RCOR1 as a downstream target of miR-23b-3p. Increasing miR-23b-3p mimics diminished RCOR1's mRNA and protein levels, while raising miR-23b-3p levels boosted RCOR1's expression. Moreover, the stimulatory impact of RCOR1 on prostate cancer cell development could be countered by elevating miR-23b-3p mimics.

Conclusion: In summary, our findings confirm that RCOR1 is indeed under the influence of miR-23, shedding light on the miR-23/RCOR1 pathway's role in prostate cancer development. This offers novel theoretical and experimental support for comprehending the underlying mechanisms of prostate cancer and for targeted therapeutic avenues.

Keywords: ROCR1; cell growth; colony formation; miR-23b-3p; migration and invasion; prostate cancer cells.