A robust framework for enhancing cardiovascular disease risk prediction using an optimized category boosting model

Math Biosci Eng. 2024 Jan 29;21(2):2943-2969. doi: 10.3934/mbe.2024131.

Abstract

Cardiovascular disease (CVD) is a leading cause of mortality worldwide, and it is of utmost importance to accurately assess the risk of cardiovascular disease for prevention and intervention purposes. In recent years, machine learning has shown significant advancements in the field of cardiovascular disease risk prediction. In this context, we propose a novel framework known as CVD-OCSCatBoost, designed for the precise prediction of cardiovascular disease risk and the assessment of various risk factors. The framework utilizes Lasso regression for feature selection and incorporates an optimized category-boosting tree (CatBoost) model. Furthermore, we propose the opposition-based learning cuckoo search (OCS) algorithm. By integrating OCS with the CatBoost model, our objective is to develop OCSCatBoost, an enhanced classifier offering improved accuracy and efficiency in predicting CVD. Extensive comparisons with popular algorithms like the particle swarm optimization (PSO) algorithm, the seagull optimization algorithm (SOA), the cuckoo search algorithm (CS), K-nearest-neighbor classification, decision tree, logistic regression, grid-search support vector machine (SVM), grid-search XGBoost, default CatBoost, and grid-search CatBoost validate the efficacy of the OCSCatBoost algorithm. The experimental results demonstrate that the OCSCatBoost model achieves superior performance compared to other models, with overall accuracy, recall, and AUC values of 73.67%, 72.17%, and 0.8024, respectively. These outcomes highlight the potential of CVD-OCSCatBoost for improving cardiovascular disease risk prediction.

Keywords: CatBoost; cardiovascular disease; cuckoo search algorithm; opposition-based learning.

MeSH terms

  • Algorithms
  • Cardiovascular Diseases* / epidemiology
  • Humans
  • Machine Learning
  • Risk Factors
  • Support Vector Machine