Pseudomonas aeruginosa strains isolated from animal with high virulence genes content and highly sensitive to antimicrobials

J Glob Antimicrob Resist. 2024 Mar 6:37:75-80. doi: 10.1016/j.jgar.2024.02.023. Online ahead of print.

Abstract

Objectives: P. aeruginosa is one of the most metabolically versatile bacteria having the ability to survive in multiple environments through its accessory genome. An important hallmark of P. aeruginosa is the high level of antibiotic resistance, which often makes eradication difficult and sometimes impossible. Evolutionary forces have led to this bacterium to develop high antimicrobial resistance with a variety of elements contributing to both intrinsic and acquired resistance. The objectives were to genetically and phenotypically characterizer P. aeruginosa strains isolated from companion animals of different species.

Methods: We characterized a collection of 39 P. aeruginosa strains isolated from infected animals. The genetic characterization was in relation to chromosomal profile by PFGE; content of virulence gene; presence of genomic islands (GIs); genes of the cytotoxins exported by T3SS: exoU, exoS, exoT and exoY; and type IV pili allele. The phenotypic characterization was based on patterns of susceptibility to different antimicrobials.

Results: Each strain had a PFGE profile, a high virulence genes content, and a large accessory genome. However, most of the strains presented high sensitivity to almost all antimicrobials tested, showing no acquired resistance (no β-lactamases). The exception to this lack of resistance was seen with penicillin.

Conclusions: P. aeruginosa could be a naturally sensitive bacterium to standard antimicrobials but could rapidly develop intrinsic and acquired resistance when the bacterium is exposed to pressure exerted by antibiotics, as observed in hospital settings.

Keywords: Animal infections; Highly sensitive to antimicrobials; Pseudomonas aeruginosa.