Cerebral endothelial cells mediated enhancement of brain pericyte number and migration in oxygen-glucose deprivation involves the HIF-1α/PDGF-β signaling

Brain Res. 2024 Jun 1:1832:148849. doi: 10.1016/j.brainres.2024.148849. Epub 2024 Mar 5.

Abstract

The present study focused on whether hypoxia-inducible factor-1alpha (HIF-1α) and platelet-derived factor-beta (PDGF-β) are involved in the crosstalk between brain microvascular endothelial cells (BMECs) and brain vascular pericytes (BVPs) under ischaemic-hypoxic conditions. Mono-cultures or co-cultures of BVPs and BMECs were made for the construction of the blood-brain barrier (BBB) model in vitro and then exposed to control and oxygen-glucose deprivation (OGD) conditions. BBB injury was determined by assessing the ability, apoptosis, and migration of BVPs and the transendothelial electrical resistance and horseradish peroxidase permeation of BMECs. Relative mRNA and protein levels of HIF-1α and PDGF-β, as well as tight junction proteins ZO-1 and claudin-5 were analyzed by western blotting, reverse transcription quantitative PCR, and/or immunofluorescence staining. Dual-luciferase reporter assays assessed the relationship between PDGF-β and HIF-1α. Co-culturing with BMECs alleviated OGD-induced reduction in BVP viability, elevation in BVP apoptosis, and repression in BVP migration. Co-culturing with BVPs protected against OGD-induced impairment on BMEC permeability. OGD-induced HIF-1α upregulation enhanced PDGF-β expression in mono-cultured BMECs and co-cultured BMECs with BVPs. Knockdown of HIF-1α impaired the effect of BMECs on BVPs under OGD conditions, and PDGFR-β silencing in BVPs blocked the crosstalk between BMECs and BVPs under OGD conditions. The crosstalk between BMECs and BVPs was implicated in OGD-induced BBB injury through the HIF-1α/PDGF-β signaling.

Keywords: BMECs; Blood-brain barrier; Crosstalk; Deprivation; Oxygen-glucose.

MeSH terms

  • Brain / metabolism
  • Endothelial Cells* / metabolism
  • Glucose / metabolism
  • Hypoxia / metabolism
  • Oxygen* / metabolism
  • Pericytes / metabolism
  • Proteins / metabolism

Substances

  • Glucose
  • Oxygen
  • Proteins