Recent advances in waste-derived carbon dots and their nanocomposites for environmental remediation and biological applications

Environ Res. 2024 Mar 5;251(Pt 1):118560. doi: 10.1016/j.envres.2024.118560. Online ahead of print.

Abstract

The surging demand for eco-friendly nanomaterial synthesis has spurred the emergence of green approaches for synthesizing carbon dots (CDs). These methods utilized natural carbon sources, such as different kind of waste for CDs synthesis, underscoring their significance in waste management and circular economy initiatives. Furthermore, the properties of CDs can be tailored by their functionalization with different materials, enabling their versatile utilization in diverse scientific domains. In this regard, the current study delves into an in-depth review of recent advances in the green/sustainable fabrication of carbon dots nanocomposites (CDNCs) with metal/metal oxides and polymers within the timeframe of 2019-2023. It begins by categorizing different types of CDs, analyzing their associated nanocomposites with mechanistic insights. The primary focus is on green synthesis methods, particularly those that employ waste materials. Furthermore, we also discussed the applications of these CDs in both environmental and biological fields by covering areas such as catalysis, photocatalysis, heavy metal ion sensing, antimicrobial, and bioimaging with in-depth underlying mechanisms. At last, the review highlights the significant challenges with future directions. These include the pursuit of cost-effective green precursors, the advancement of streamlined one-step synthesis techniques, and their efficient utilization for diverse applications. Therefore, this review provides valuable insights for researchers seeking to enhance the functionality and sustainability of CDNCs by highlighting their potential to address environmental and biological challenges.

Keywords: Carbon dots; Environmental remediation; Green synthesis; Nanocomposites; Photocatalysis; Sensing.

Publication types

  • Review