SFE-Net: Spatial-Frequency Enhancement Network for robust nuclei segmentation in histopathology images

Comput Biol Med. 2024 Mar:171:108131. doi: 10.1016/j.compbiomed.2024.108131. Epub 2024 Feb 22.

Abstract

Morphological features of individual nuclei serve as a dependable foundation for pathologists in making accurate diagnoses. Existing methods that rely on spatial information for feature extraction have achieved commendable results in nuclei segmentation tasks. However, these approaches are not sufficient to extract edge information of nuclei with small sizes and blurred outlines. Moreover, the lack of attention to the interior of the nuclei leads to significant internal inconsistencies. To address these challenges, we introduce a novel Spatial-Frequency Enhancement Network (SFE-Net) to incorporate spatial-frequency features and promote intra-nuclei consistency for robust nuclei segmentation. Specifically, SFE-Net incorporates a distinctive Spatial-Frequency Feature Extraction module and a Spatial-Guided Feature Enhancement module, which are designed to preserve spatial-frequency information and enhance feature representation respectively, to achieve comprehensive extraction of edge information. Furthermore, we introduce the Label-Guided Distillation method, which utilizes semantic features to guide the segmentation network in strengthening boundary constraints and learning the intra-nuclei consistency of individual nuclei, to improve the robustness of nuclei segmentation. Extensive experiments on three publicly available histopathology image datasets (MoNuSeg, TNBC and CryoNuSeg) demonstrate the superiority of our proposed method, which achieves 79.23%, 81.96% and 73.26% Aggregated Jaccard Index, respectively. The proposed model is available at https://github.com/jinshachen/SFE-Net.

Keywords: Deep learning; Histopathology images; Label-Guided Distillation; Nuclei segmentation; Spatial-Frequency Enhancement.

MeSH terms

  • Cell Nucleus*
  • Image Processing, Computer-Assisted
  • Learning*
  • Semantics