Photochemical Mechanisms of Hydroxyquinoline Benzimidazole: Insights from Electronic Structure Calculations and Nonadiabatic Dynamics Simulations

J Phys Chem A. 2024 Mar 21;128(11):1984-1992. doi: 10.1021/acs.jpca.3c07298. Epub 2024 Mar 6.

Abstract

Excited-state intramolecular double proton transfer (ESIDPT) has received much attention because of its widespread existence in the life reactions of living organisms, and materials with this property are significant for their special luminescent properties. In this work, the complete active space self-consistent field (CASSCF) and OM2/multireference configuration interaction (OM2/MRCI) methods have been employed to study the static electronic structure calculations of the photochemistry and the possibility of ESIDPT process of hydroxyquinoline benzimidazole (HQB) molecule, along with the nonadiabatic dynamics simulations. The computational results show that the HQB molecule is relaxed to the S1-ENOL minimum after being excited to the Franck-Condon point in the S1 state. Subsequently, during the nonadiabatic deactivation process, the OH···N proton transfer and the twisting of benzimidazole occur before arriving at the single proton transfer conical intersection S1S0-KETO. Finally, the system can either return to the initial ground-state structure S0-ENOL or to the single proton transfer ground-state structure S0-KETO, both of which have almost the same probability. The dynamics simulations also show that no double proton transfer occurs. The excited-state lifetime of HQB is fitted to 1.1 ps, and only 64% of the dynamic trajectories return to the ground state within the 2.0 ps simulation time. We hope the detailed reaction mechanism of the HQB molecule will provide new insights into similar systems.