High-spatial resolution ground-level ozone in Yunnan, China: A spatiotemporal estimation based on comparative analyses of machine learning models

Environ Res. 2024 Mar 3;251(Pt 1):118609. doi: 10.1016/j.envres.2024.118609. Online ahead of print.

Abstract

Monitoring ground-level ozone concentrations is a critical aspect of atmospheric environmental studies. Given the existing limitations of satellite data products, especially the lack of ground-level ozone characterization, and the discontinuity of ground observations, there is a pressing need for high-precision models to simulate ground-level ozone to assess surface ozone pollution. In this study, we have compared several widely utilized ensemble learning and deep learning methods for ground-level ozone simulation. Furthermore, we have thoroughly contrasted the temporal and spatial generalization performances of the ensemble learning and deep learning models. The 3-Dimensional Convolutional Neural Network (3-D CNN) model has emerged as the optimal choice for evaluating the daily maximum 8-h average ozone in Yunnan Province. The model has good performance: a spatial resolution of 0.05° × 0.05° and strong predictive power, as indicated by a Coefficient of Determination (R2) of 0.83 and a Root Mean Square Error (RMSE) of 12.54 μg/m³ in sample-based 5-fold cross-validation (CV). In the final stage of our study, we applied the 3-D CNN model to generate a comprehensive daily maximum 8-h average ozone dataset for Yunnan Province for the year 2021. This application has furnished us with a crucial high-resolution and highly accurate dataset for further in-depth studies on the issue of ozone pollution in Yunnan Province.

Keywords: Deep learning; Ensemble learning; Ground-level ozone; Temporal and spatial CV; Yunnan.