Beyond the Nucleus: Plastic Chemicals Activate G Protein-Coupled Receptors

Environ Sci Technol. 2024 Mar 19;58(11):4872-4883. doi: 10.1021/acs.est.3c08392. Epub 2024 Mar 5.

Abstract

G protein-coupled receptors (GPCRs) are central mediators of cell signaling and physiological function. Despite their biological significance, GPCRs have not been widely studied in the field of toxicology. Herein, we investigated these receptors as novel targets of plastic chemicals using a high-throughput drug screening assay with 126 human non-olfactory GPCRs. In a first-pass screen, we tested the activity of triphenol phosphate, bisphenol A, and diethyl phthalate, as well as three real-world mixtures of chemicals extracted from plastic food packaging covering all major polymer types. We found 11 GPCR-chemical interactions, of which the chemical mixtures exhibited the most robust activity at adenosine receptor 1 (ADORA1) and melatonin receptor 1 (MTNR1A). We further confirm that polyvinyl chloride and polyurethane products contain ADORA1 or MTNRA1 agonists using a confirmatory secondary screen and pharmacological knockdown experiments. Finally, an analysis of the associated gene ontology terms suggests that ADORA1 and MTNR1A activation may be linked to downstream effects on circadian and metabolic processes. This work highlights that signaling disruption caused by plastic chemicals is broader than that previously believed and demonstrates the relevance of nongenomic pathways, which have, thus far, remained unexplored.

Keywords: GPCRs; PRESTO-Tango; cell surface receptor; endocrine disrupting chemicals; food packaging; plastics; screen; signaling disruption.

MeSH terms

  • High-Throughput Screening Assays
  • Humans
  • Polymers
  • Receptors, G-Protein-Coupled* / agonists
  • Receptors, G-Protein-Coupled* / genetics
  • Receptors, G-Protein-Coupled* / metabolism
  • Signal Transduction*

Substances

  • Receptors, G-Protein-Coupled
  • Polymers