Cellular senescence and wound healing in aged and diabetic skin

Front Physiol. 2024 Feb 19:15:1344116. doi: 10.3389/fphys.2024.1344116. eCollection 2024.

Abstract

Cellular senescence is a biological mechanism that prevents abnormal cell proliferation during tissue repair, and it is often accompanied by the secretion of various factors, such as cytokines and chemokines, known as the senescence-associated secretory phenotype (SASP). SASP-mediated cell-to-cell communication promotes tissue repair, regeneration, and development. However, senescent cells can accumulate abnormally at injury sites, leading to excessive inflammation, tissue dysfunction, and intractable wounds. The effects of cellular senescence on skin wound healing can be both beneficial and detrimental, depending on the condition. Here, we reviewed the functional differences in cellular senescence that emerge during wound healing, chronic inflammation, and skin aging. We also review the latest mechanisms of wound healing in the epidermis, dermis, and subcutaneous fat, with a focus on cellular senescence, chronic inflammation, and tissue regeneration. Finally, we discuss the potential clinical applications of promoting and inhibiting cellular senescence to maximize benefits and minimize detrimental effects.

Keywords: aged-skin; cellular senescence; diabetic skin; senescence-associated secretory phenotypes (SASP); woundhealing.

Publication types

  • Review

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by JSPS KAKENHI (Grant Numbers JP21H03049, JP21H03293, 19K18908, 22K19757, 23K15951, and 23K18443), JST SPRING (Grant Number JPMJSP2119), NOASTEC Foundation, and Takeda Science Foundation.