Rapid, contamination-less, and efficient environmental DNA filtration system

MethodsX. 2024 Feb 24:12:102621. doi: 10.1016/j.mex.2024.102621. eCollection 2024 Jun.

Abstract

Due to the sporadic distribution and trace amount of environmental DNA (eDNA) in deep-sea water, in the context of biodiversity monitoring, large volumes of filtration and multiple filtration replicates are required for eDNA metabarcoding. To address issues tied to the use of multiple filtration devices and large filtration volumes (e.g., contamination, time consumption, etc.), we have developed two systems for simple, rapid, and contamination-less filtration simultaneously that allow for the processing of multiple sample replicates from large volumes of water. First, the water from a Niskin bottle was filtered directly using a solenoid pump. Second, the pumped deep-sea water, using the siphon effect, was directly filtered by a filtration device driven by water pressure. This system can process 24 replicates simultaneously without the need for expensive equipment and active driving force. Compared with conventional filtering methods, e.g., peristaltic pumps, the proposed systems reduce filtration time, minimizing contamination, and enabling the simultaneous acquisition of multiple replicates. Overall, the systems presented here provide an effective approach for eDNA metabarcoding analysis, particularly for the filtration of large volumes of water containing small amounts of eDNA, such as deep-sea water. •The present systems reduce filtration time and contamination without water having to be transferred.•Simultaneous multiple replicates improve the efficiency and reliability of biodiversity assessments.

Keywords: Biodiversity monitoring; Deep-sea water; Large volume and multiple filtration system for environmental DNA; Scarcely contaminated filtration; eDNA.