Multi-feature sparse representation based on adaptive graph constraint for cropland delineation

Opt Express. 2024 Feb 12;32(4):6463-6480. doi: 10.1364/OE.506934.

Abstract

Cropland delineation is the basis of agricultural resource surveys and many algorithms for plot identification have been studied. However, there is still a vacancy in SRC for cropland delineation with the high-dimensional data extracted from UAV RGB photographs. In order to address this problem, a new sparsity-based classification algorithm is proposed. Firstly, the multi-feature association sparse model is designed by extracting the multi-feature of UAV RGB photographs. Next, the samples with similar characteristics are hunted with the breadth-first principle to construct a shape-adaptive window for each test. Finally, an algorithm, multi-feature sparse representation based on adaptive graph constraint (AMFSR), is obtained by solving the optimal objective iteratively. Experimental results show that the overall accuracy (OA) of AMFSR reaches 92.3546% and the Kappa is greater than 0.8. Furthermore, experiments have demonstrated that the model also has a generalization ability.