Distribution of intensity and M2 factor for a partially coherent flat-topped beam in bidirectional turbulent atmosphere and plasma connection

Opt Express. 2024 Feb 12;32(4):5982-5995. doi: 10.1364/OE.514420.

Abstract

This study investigates the bidirectional transmission of a partially coherent flat-topped beam in a turbulent atmosphere and plasma. Analytical formulas for the intensity distribution and M2 factor are derived based on the optical transmission matrix, Collins formula, and second moment theory with Wigner distribution function. Numerical results show that the beam order and transverse spatial coherence width can be selected appropriately to mitigate turbulence and plasma induced evolution properties. The partially coherent flat-topped beam propagation through a turbulent atmosphere and plasma of the forward transmission effect on the intensity distribution and M2 factor are smaller than that of the reverse transmission. Under the same conditions, the M2 factor of a partially coherent flat-topped beam is smaller than the Gaussian beam in bidirectional transmission. Our results can be used in long-distance free-space optical communications.