Rational Design of Tetrahedral Derivatives as Efficient Light-Emitting Materials Based on "Super Atom" Perspective

Nano Lett. 2024 Mar 13;24(10):3237-3242. doi: 10.1021/acs.nanolett.4c00173. Epub 2024 Mar 4.

Abstract

Traditional semiconductor quantum dots of groups II-VI are key ingredients of next-generation display technology. Yet, the majority of them contain toxic heavy-metal elements, thus calling for alternative light-emitting materials. Herein, we have explored three novel categories of multicomponent compounds, namely, tetragonal II-III2-VI4 porous ternary compounds, cubic I2-II3-VI4 ternary compounds, and cubic I-II-III3-V4 quaternary compounds. This is achieved by judicious introduction of a "super atom" perspective and concurrently varying the solid-state lattice packing of involved super atoms or the population of surrounding counter cations. Based on first-principles calculations of 392 candidate materials with designed crystal structures, 53 highly stable materials have been screened. Strikingly, 34 of them are direct-bandgap semiconductors with emitting wavelengths covering the near-infrared and visible-light regions. This work provides a comprehensive database of highly efficient light-emitting materials, which may be of interest for a broad field of optoelectronic applications.

Keywords: density functional theory; optical properties; quantum dot; structural properties; traditional semiconductors.