Dynamic carriers for therapeutic RNA delivery

Proc Natl Acad Sci U S A. 2024 Mar 12;121(11):e2307799120. doi: 10.1073/pnas.2307799120. Epub 2024 Mar 4.

Abstract

Carriers for RNA delivery must be dynamic, first stabilizing and protecting therapeutic RNA during delivery to the target tissue and across cellular membrane barriers and then releasing the cargo in bioactive form. The chemical space of carriers ranges from small cationic lipids applied in lipoplexes and lipid nanoparticles, over medium-sized sequence-defined xenopeptides, to macromolecular polycations applied in polyplexes and polymer micelles. This perspective highlights the discovery of distinct virus-inspired dynamic processes that capitalize on mutual nanoparticle-host interactions to achieve potent RNA delivery. From the host side, subtle alterations of pH, ion concentration, redox potential, presence of specific proteins, receptors, or enzymes are cues, which must be recognized by the RNA nanocarrier via dynamic chemical designs including cleavable bonds, alterable physicochemical properties, and supramolecular assembly-disassembly processes to respond to changing biological microenvironment during delivery.

Keywords: LNP; RNA; lipoplex; polyplex; synthetic virus.

MeSH terms

  • Cell Membrane
  • Cues*
  • Micelles*
  • Polymers
  • RNA

Substances

  • Micelles
  • Polymers
  • RNA