Opposing roles of organic salts on mini-protein structure

Phys Chem Chem Phys. 2024 Mar 13;26(11):8973-8981. doi: 10.1039/d3cp05607d.

Abstract

We investigated the effects of 1-ethyl-3-methylimidazolium chloride ([EMIM][Cl]) and choline chloride ([Chol][Cl]) on the local environment and conformational landscapes of Trp-cage and Trpzip4 mini-proteins using experimental and computational approaches. Fluorescence experiments and computational simulations revealed distinct behaviors of the mini-proteins in the presence of these organic salts. [EMIM][Cl] showed a strong interaction with Trp-cage, leading to fluorescence quenching and destabilization of its native structural interactions. Conversely, [Chol][Cl] had a negligible impact on Trp-cage fluorescence at low concentrations but increased it at high concentrations, indicating a stabilizing role. Computational simulations elucidated that [EMIM][Cl] disrupted the hydrophobic core packing and decreased proline-aromatic residue contacts in Trp-cage, resulting in a more exposed environment for Trp residues. In contrast, [Chol][Cl] subtly influenced the hydrophobic core packing, creating a hydrophobic environment near the tryptophan residues. Circular dichroism experiments revealed that [Chol][Cl] stabilized the secondary structure of both mini-proteins, although computational simulations did not show significant changes in secondary content at the explored concentrations. The simulations also demonstrated a more rugged free energy landscape for Trp-cage and Trpzip4 in [EMIM][Cl], suggesting destabilization of the tertiary structure for Trp-cage and secondary structure for Trpzip4. Similar fluorescence trends were observed for Trpzip4, with [EMIM][Cl] quenching fluorescence and exhibiting stronger interaction, while [Chol][Cl] increased the fluorescence at high concentrations. These findings highlight the interplay between [EMIM][Cl] and [Chol][Cl] with the mini-proteins and provide a detailed molecular-level understanding of how these organic salts impact the nearby surroundings and structural variations. Understanding such interactions is valuable for diverse applications, from biochemistry to materials science.

MeSH terms

  • Protein Folding*
  • Protein Structure, Secondary
  • Salts*

Substances

  • Salts