Targeting autophagy to treat HIV immune dysfunction

Autophagy Rep. 2023;2(1):2254615. doi: 10.1080/27694127.2023.2254615. Epub 2023 Sep 11.

Abstract

Chronic immune activation and inflammation are hallmarks of Human Immunodeficiency Virus-1 (HIV-1) pathogenesis. Therefore, approaches to safely reduce systematic inflammation are essential to improve immune responses and thus slow or prevent HIV progression. Autophagy is a cellular mechanism for the disposal of damaged organelles and elimination of intracellular pathogens. It is not only vital for energy homeostasis, but also plays a critical role in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Our study demonstrated that impairment of autophagy leads to spontaneous type I-Interferons (IFN-I) signaling, while autophagy induction reduces IFN-I signaling in macrophages. Importantly, we demonstrated that in vivo treatment of autophagy inducer rapamycin in chronically HIV infected humanized mice decreased chronic IFN-I signaling, improved exhausted anti-viral T cell function, and reduced viral loads. Taken together, our study supports the therapeutic potential of rapamycin and potentially other autophagy inducers in alleviating HIV-1 immunopathogenesis and improving anti-viral T cell responses.

Keywords: Ant-HIV-1 immunity; HIV-1 immunopathogenesis; IFN-I signaling; autophagy; immune exhaustion; inflammation; rapamycin.