Surface micropatterning of 3D printed PCL scaffolds promotes osteogenic differentiation of BMSCs and regulates macrophage M2 polarization

Heliyon. 2024 Feb 22;10(5):e26621. doi: 10.1016/j.heliyon.2024.e26621. eCollection 2024 Mar 15.

Abstract

Micropatterned structures on the surface of materials possessing biomimetic properties to mimic the extracellular matrix and induce cellular behaviors have been widely studied. However, it is still a major challenge to obtain internally stable and controllable micropatterned 3D scaffolds for bone repair and regeneration. In this study, 3D scaffolds with regular grating arrays using polycaprolactone (PCL) as a matrix material were prepared by combining 3D printing and soft lithography, and the effects of grating micropatterning on osteogenic differentiation of BMSCs and M1/M2 polarization of macrophages were investigated. The results showed that compared with the planar group and the 30um grating spacing group, PCL with a grating spacing of 20um significantly promoted the osteogenic differentiation of BMSCs, induced the polarization of RAW264.7 cells toward M2 type, and suppressed the expression of M1-type pro-inflammatory genes and markers. In conclusion, we successfully constructed PCL-based three-dimensional scaffolds with stable and controllable micrographs (grating arrays) inside, which possess excellent osteogenic properties and promote the formation of an immune microenvironment conducive to osteogenesis. This study is a step forward to the exploration of bone-filling materials affecting cell behavior, and makes a new contribution to the provision of high-quality materials.

Keywords: BMSCs; Grating micropatterning; Immunoregulation; Osteogenic differentiation; PCL.