Cognitive and sensory capacity each contribute to the canine spatial bias

Ethology. 2024 Feb;130(2):e13423. doi: 10.1111/eth.13423.

Abstract

Dogs interpret cues as being about location, which human infants would relate to objects. This spatial bias could shed light on the evolution of object-centered thought, however, research needs to rule out that this is not a by-product of dogs' weaker (compared to humans) visual capacities. In this study, we used a data set in which dogs were tested in two types of learning tasks (discrimination and reversal learning) with two types of rewarded cues (location and object features). In both tasks, dogs displayed spatial bias, that is, faster learning when the rewarded cue was a location. We investigated how sensory and cognitive capacity each contributes to this spatial bias. To this end, an estimate for general cognitive ability (g) was obtained from a battery of tests for some of the dogs. Cephalic index, a feature targeted in breeding and linked to differences in visual capacity, correlated negatively with the expression of spatial bias only in the easier discrimination learning task, while a negative correlation between g factor and spatial bias scores emerged in the more difficult reversal learning task. We conclude that dogs' spatial bias cannot be reduced to a sensory limitation and is easier to overcome with greater cognitive capacity.

Keywords: cognition; dogs; spatial bias.